การอนุพัทธ์ (Derivation) กฎของนิวตัน ของ กฎการเคลื่อนที่ของดาวเคราะห์


การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 2

m ⋅ r ¨ = M ⋅ m r 2 ⋅ ( − r ^ ) ⋅ G {\displaystyle m\cdot {\ddot {\mathbf {r} }}={\frac {M\cdot m}{r^{2}}}\cdot (-{\hat {\mathbf {r} }})\cdot G}


r ^ ˙ = θ ˙ θ ^ {\displaystyle {\dot {\hat {\mathbf {r} }}}={\dot {\theta }}{\hat {\boldsymbol {\theta }}}}

where θ ^ {\displaystyle {\hat {\boldsymbol {\theta }}}} is the tangential unit vector, and

θ ^ ˙ = − θ ˙ r ^ . {\displaystyle {\dot {\hat {\boldsymbol {\theta }}}}=-{\dot {\theta }}{\hat {\mathbf {r} }}.}

So the position vector

r = r r ^ {\displaystyle \mathbf {r} =r{\hat {\mathbf {r} }}}

is differentiated twice to give the velocity vector and the acceleration vector

r ˙ = r ˙ r ^ + r r ^ ˙ = r ˙ r ^ + r θ ˙ θ ^ , {\displaystyle {\dot {\mathbf {r} }}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\hat {\mathbf {r} }}}={\dot {r}}{\hat {\mathbf {r} }}+r{\dot {\theta }}{\hat {\boldsymbol {\theta }}},} r ¨ = ( r ¨ r ^ + r ˙ r ^ ˙ ) + ( r ˙ θ ˙ θ ^ + r θ ¨ θ ^ + r θ ˙ θ ^ ˙ ) = ( r ¨ − r θ ˙ 2 ) r ^ + ( r θ ¨ + 2 r ˙ θ ˙ ) θ ^ . {\displaystyle {\ddot {\mathbf {r} }}=({\ddot {r}}{\hat {\mathbf {r} }}+{\dot {r}}{\dot {\hat {\mathbf {r} }}})+({\dot {r}}{\dot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\ddot {\theta }}{\hat {\boldsymbol {\theta }}}+r{\dot {\theta }}{\dot {\hat {\boldsymbol {\theta }}}})=({\ddot {r}}-r{\dot {\theta }}^{2}){\hat {\mathbf {r} }}+(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}){\hat {\boldsymbol {\theta }}}.}

Note that for constant distance,   r {\displaystyle \ r} , the planet is subject to the centripetal acceleration, r θ ˙ 2 {\displaystyle r{\dot {\theta }}^{2}} , and for constant angular speed, θ ˙ {\displaystyle {\dot {\theta }}} , the planet is subject to the coriolis acceleration, 2 r ˙ θ ˙ {\displaystyle 2{\dot {r}}{\dot {\theta }}} .

Inserting the acceleration vector into Newton's laws, and dividing by m, gives the vector equation of motion

( r ¨ − r θ ˙ 2 ) r ^ + ( r θ ¨ + 2 r ˙ θ ˙ ) θ ^ = − G M r − 2 r ^ {\displaystyle ({\ddot {r}}-r{\dot {\theta }}^{2}){\hat {\mathbf {r} }}+(r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}){\hat {\boldsymbol {\theta }}}=-GMr^{-2}{\hat {\mathbf {r} }}}

Equating component, we get the two ordinary differential equations of motion, one for the radial acceleration and one for the tangential acceleration:

r ¨ − r θ ˙ 2 = − G M r − 2 , {\displaystyle {\ddot {r}}-r{\dot {\theta }}^{2}=-GMr^{-2},} r θ ¨ + 2 r ˙ θ ˙ = 0. {\displaystyle r{\ddot {\theta }}+2{\dot {r}}{\dot {\theta }}=0.}

  r θ ˙ : {\displaystyle \ r{\dot {\theta }}:}

θ ¨ θ ˙ + 2 r ˙ r = 0 {\displaystyle {\frac {\ddot {\theta }}{\dot {\theta }}}+2{\frac {\dot {r}}{r}}=0}

and integrate:

log ⁡ θ ˙ + 2 log ⁡ r = log ⁡ ℓ , {\displaystyle \log {\dot {\theta }}+2\log r=\log \ell ,}

where log ⁡ ℓ {\displaystyle \log \ell } is a constant of integration, and exponentiate:

r 2 θ ˙ = ℓ . {\displaystyle r^{2}{\dot {\theta }}=\ell .}

This says that the specific angular momentum r 2 θ ˙ {\displaystyle r^{2}{\dot {\theta }}} is a constant of motion, even if both the distance   r {\displaystyle \ r} and the angular speed θ ˙ {\displaystyle {\dot {\theta }}} vary.

The area swept out from time t1 to time t2,

  ∫ t 1 t 2 1 2 ⋅ b a s e ⋅ h e i g h t ⋅ d t = ∫ t 1 t 2 1 2 ⋅ r ⋅ r θ ˙ ⋅ d t = 1 2 ⋅ ℓ ⋅ ( t 2 − t 1 ) {\displaystyle \ \int _{t_{1}}^{t_{2}}{\frac {1}{2}}\cdot base\cdot height\cdot dt=\int _{t_{1}}^{t_{2}}{\frac {1}{2}}\cdot r\cdot r{\dot {\theta }}\cdot dt={\frac {1}{2}}\cdot \ell \cdot (t_{2}-t_{1})}

depends only on the duration t2−t1. This is Kepler's second law.

การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 1

p = ℓ 2 G − 1 M − 1 {\displaystyle p=\ell ^{2}G^{-1}M^{-1}}   u = p r − 1 {\displaystyle \ u=pr^{-1}}

and get

− G M r − 2 = − ℓ 2 p − 3 u 2 {\displaystyle -GMr^{-2}=-\ell ^{2}p^{-3}u^{2}}

and

  θ ˙ = ℓ r − 2 = ℓ p − 2 u 2 . {\displaystyle \ {\dot {\theta }}=\ell r^{-2}=\ell p^{-2}u^{2}.}   X ˙ = d X d θ ⋅ θ ˙ = d X d θ ⋅ ℓ p − 2 u 2 . {\displaystyle \ {\dot {X}}={\frac {dX}{d\theta }}\cdot {\dot {\theta }}={\frac {dX}{d\theta }}\cdot \ell p^{-2}u^{2}.}

Differentiate

  r = p u − 1 {\displaystyle \ r=pu^{-1}}

twice:

r ˙ = d ( p u − 1 ) d θ ⋅ ℓ p − 2 u 2 = − p u − 2 d u d θ ⋅ ℓ p − 2 u 2 = − ℓ p − 1 d u d θ {\displaystyle {\dot {r}}={\frac {d(pu^{-1})}{d\theta }}\cdot \ell p^{-2}u^{2}=-pu^{-2}{\frac {du}{d\theta }}\cdot \ell p^{-2}u^{2}=-\ell p^{-1}{\frac {du}{d\theta }}} r ¨ = d r ˙ d θ ⋅ ℓ p − 2 u 2 = d d θ ( − ℓ p − 1 d u d θ ) ⋅ ℓ p − 2 u 2 = − ℓ 2 p − 3 u 2 d 2 u d θ 2 {\displaystyle {\ddot {r}}={\frac {d{\dot {r}}}{d\theta }}\cdot \ell p^{-2}u^{2}={\frac {d}{d\theta }}(-\ell p^{-1}{\frac {du}{d\theta }})\cdot \ell p^{-2}u^{2}=-\ell ^{2}p^{-3}u^{2}{\frac {d^{2}u}{d\theta ^{2}}}}

Substitute into the radial equation of motion

r ¨ − r θ ˙ 2 = − G M r − 2 {\displaystyle {\ddot {r}}-r{\dot {\theta }}^{2}=-GMr^{-2}}

and get

( − ℓ 2 p − 3 u 2 d 2 u d θ 2 ) − ( p u − 1 ) ( ℓ p − 2 u 2 ) 2 = − ℓ 2 p − 3 u 2 {\displaystyle (-\ell ^{2}p^{-3}u^{2}{\frac {d^{2}u}{d\theta ^{2}}})-(pu^{-1})(\ell p^{-2}u^{2})^{2}=-\ell ^{2}p^{-3}u^{2}}

Divide by − ℓ 2 p − 3 u 2 {\displaystyle -\ell ^{2}p^{-3}u^{2}}

d 2 u d θ 2 + u = 1. {\displaystyle {\frac {d^{2}u}{d\theta ^{2}}}+u=1.}


  u = 1. {\displaystyle \ u=1.} d 2 u d θ 2 + u = 0 {\displaystyle {\frac {d^{2}u}{d\theta ^{2}}}+u=0}

These solutions are

  u = ϵ ⋅ cos ⁡ ( θ − A ) {\displaystyle \ u=\epsilon \cdot \cos(\theta -A)}

where   ϵ {\displaystyle \ \epsilon } and   A {\displaystyle \ A} are arbitrary constants of integration. So the result is

  u = 1 + ϵ ⋅ cos ⁡ ( θ − A ) {\displaystyle \ u=1+\epsilon \cdot \cos(\theta -A)}

Choosing the axis of the coordinate system such that   A = 0 {\displaystyle \ A=0} , and inserting   u = p r − 1 {\displaystyle \ u=pr^{-1}} , gives:

  p r − 1 = 1 + ϵ ⋅ cos ⁡ θ . {\displaystyle \ pr^{-1}=1+\epsilon \cdot \cos \theta .}

If   ϵ < 1 , {\displaystyle \ \epsilon <1,} this is Kepler's first law.

กฎเคปเลอร์ข้อที่ 3

T 2 = 4 π 2 G M ⋅ r 3 {\displaystyle T^{2}={\frac {4\pi ^{2}}{GM}}\cdot r^{3}}

where:


T 2 = 4 π 2 G ( M + m ) ⋅ a 3 {\displaystyle T^{2}={\frac {4\pi ^{2}}{G(M+m)}}\cdot a^{3}}

โดย:


1 2 ⋅ ( 1 − ϵ ) a ⋅ V A d t = 1 2 ⋅ ( 1 + ϵ ) a ⋅ V B d t {\displaystyle {\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1-\epsilon )a\cdot V_{A}\,dt={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1+\epsilon )a\cdot V_{B}\,dt} ( 1 − ϵ ) ⋅ V A = ( 1 + ϵ ) ⋅ V B {\displaystyle (1-\epsilon )\cdot V_{A}=(1+\epsilon )\cdot V_{B}} V A = V B ⋅ 1 + ϵ 1 − ϵ {\displaystyle V_{A}=V_{B}\cdot {\frac {1+\epsilon }{1-\epsilon }}}


m V A 2 2 − G m M ( 1 − ϵ ) a = m V B 2 2 − G m M ( 1 + ϵ ) a {\displaystyle {\frac {mV_{A}^{2}}{2}}-{\frac {GmM}{(1-\epsilon )a}}={\frac {mV_{B}^{2}}{2}}-{\frac {GmM}{(1+\epsilon )a}}} V A 2 2 − V B 2 2 = G M ( 1 − ϵ ) a − G M ( 1 + ϵ ) a {\displaystyle {\frac {V_{A}^{2}}{2}}-{\frac {V_{B}^{2}}{2}}={\frac {GM}{(1-\epsilon )a}}-{\frac {GM}{(1+\epsilon )a}}} V A 2 − V B 2 2 = G M a ⋅ ( 1 ( 1 − ϵ ) − 1 ( 1 + ϵ ) ) {\displaystyle {\frac {V_{A}^{2}-V_{B}^{2}}{2}}={\frac {GM}{a}}\cdot \left({\frac {1}{(1-\epsilon )}}-{\frac {1}{(1+\epsilon )}}\right)} ( V B ⋅ 1 + ϵ 1 − ϵ ) 2 − V B 2 2 = G M a ⋅ ( 1 + ϵ − 1 + ϵ ( 1 − ϵ ) ( 1 + ϵ ) ) {\displaystyle {\frac {\left(V_{B}\cdot {\frac {1+\epsilon }{1-\epsilon }}\right)^{2}-V_{B}^{2}}{2}}={\frac {GM}{a}}\cdot \left({\frac {1+\epsilon -1+\epsilon }{(1-\epsilon )(1+\epsilon )}}\right)} V B 2 ⋅ ( 1 + ϵ 1 − ϵ ) 2 − V B 2 = 2 G M a ⋅ ( 2 ϵ ( 1 − ϵ ) ( 1 + ϵ ) ) {\displaystyle V_{B}^{2}\cdot \left({\frac {1+\epsilon }{1-\epsilon }}\right)^{2}-V_{B}^{2}={\frac {2GM}{a}}\cdot \left({\frac {2\epsilon }{(1-\epsilon )(1+\epsilon )}}\right)} V B 2 ⋅ ( ( 1 + ϵ ) 2 − ( 1 − ϵ ) 2 ( 1 − ϵ ) 2 ) = 4 G M ϵ a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) {\displaystyle V_{B}^{2}\cdot \left({\frac {(1+\epsilon )^{2}-(1-\epsilon )^{2}}{(1-\epsilon )^{2}}}\right)={\frac {4GM\epsilon }{a\cdot (1-\epsilon )(1+\epsilon )}}} V B 2 ⋅ ( 1 + 2 ϵ + ϵ 2 − 1 + 2 ϵ − ϵ 2 ( 1 − ϵ ) 2 ) = 4 G M ϵ a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) {\displaystyle V_{B}^{2}\cdot \left({\frac {1+2\epsilon +\epsilon ^{2}-1+2\epsilon -\epsilon ^{2}}{(1-\epsilon )^{2}}}\right)={\frac {4GM\epsilon }{a\cdot (1-\epsilon )(1+\epsilon )}}} V B 2 ⋅ 4 ϵ = 4 G M ϵ ⋅ ( 1 − ϵ ) 2 a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) {\displaystyle V_{B}^{2}\cdot 4\epsilon ={\frac {4GM\epsilon \cdot (1-\epsilon )^{2}}{a\cdot (1-\epsilon )(1+\epsilon )}}} V B = G M ⋅ ( 1 − ϵ ) a ⋅ ( 1 + ϵ ) . {\displaystyle V_{B}={\sqrt {\frac {GM\cdot (1-\epsilon )}{a\cdot (1+\epsilon )}}}.} d A d t = 1 2 ⋅ ( 1 + ϵ ) a ⋅ V B d t d t = 1 2 ⋅ ( 1 + ϵ ) a ⋅ V B {\displaystyle {\frac {dA}{dt}}={\frac {{\frac {1}{2}}\cdot (1+\epsilon )a\cdot V_{B}\,dt}{dt}}={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1+\epsilon )a\cdot V_{B}} = 1 2 ⋅ ( 1 + ϵ ) a ⋅ G M ⋅ ( 1 − ϵ ) a ⋅ ( 1 + ϵ ) = 1 2 ⋅ G M a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) {\displaystyle ={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot (1+\epsilon )a\cdot {\sqrt {\frac {GM\cdot (1-\epsilon )}{a\cdot (1+\epsilon )}}}={\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot {\sqrt {GMa\cdot (1-\epsilon )(1+\epsilon )}}} T ⋅ d A d t = π a ( 1 − ϵ 2 ) a {\displaystyle T\cdot {\frac {dA}{dt}}=\pi a{\sqrt {(1-\epsilon ^{2})}}a} T ⋅ 1 2 ⋅ G M a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) = π ( 1 − ϵ 2 ) a 2 {\displaystyle T\cdot {\begin{matrix}{\frac {1}{2}}\end{matrix}}\cdot {\sqrt {GMa\cdot (1-\epsilon )(1+\epsilon )}}=\pi {\sqrt {(1-\epsilon ^{2})}}a^{2}} T = 2 π ( 1 − ϵ 2 ) a 2 G M a ⋅ ( 1 − ϵ ) ( 1 + ϵ ) = 2 π a 2 G M a = 2 π G M a 3 {\displaystyle T={\frac {2\pi {\sqrt {(1-\epsilon ^{2})}}a^{2}}{\sqrt {GMa\cdot (1-\epsilon )(1+\epsilon )}}}={\frac {2\pi a^{2}}{\sqrt {GMa}}}={\frac {2\pi }{\sqrt {GM}}}{\sqrt {a^{3}}}} T 2 = 4 π 2 G M a 3 . {\displaystyle T^{2}={\frac {4\pi ^{2}}{GM}}a^{3}.}


T 2 = 4 π 2 G ( M + m ) a 3 . {\displaystyle T^{2}={\frac {4\pi ^{2}}{G(M+m)}}a^{3}.}

Q.E.D.

ใกล้เคียง

กฎการเคลื่อนที่ของนิวตัน กฎการเคลื่อนที่ของดาวเคราะห์ของเค็พเพลอร์ กฎการพาดหัวของเบ็ทเทอร์ริดจ์ กฎการปะทะ กฎการอนุรักษ์ กฎการเหนี่ยวนำของฟาราเดย์ กฎการแผ่รังสีความร้อนของเคียร์ชฮ็อฟ กฎการสลับที่ กฎการดูดกลืน กฎการมีตัวอย่างน้อย